3.23 \(\int \frac{d+e x+f x^2+g x^3+h x^4}{a+b x^2+c x^4} \, dx\)

Optimal. Leaf size=290 \[ \frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (\frac{-c (2 a h+b f)+b^2 h+2 c^2 d}{\sqrt{b^2-4 a c}}-b h+c f\right )}{\sqrt{2} c^{3/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (-\frac{-2 a c h+b^2 h-b c f+2 c^2 d}{\sqrt{b^2-4 a c}}-b h+c f\right )}{\sqrt{2} c^{3/2} \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{(2 c e-b g) \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{2 c \sqrt{b^2-4 a c}}+\frac{g \log \left (a+b x^2+c x^4\right )}{4 c}+\frac{h x}{c} \]

[Out]

(h*x)/c + ((c*f - b*h + (2*c^2*d + b^2*h - c*(b*f + 2*a*h))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt
[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + ((c*f - b*h - (2*c^2*d - b*c*f + b^2
*h - 2*a*c*h)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*Sqr
t[b + Sqrt[b^2 - 4*a*c]]) - ((2*c*e - b*g)*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(2*c*Sqrt[b^2 - 4*a*c]) +
 (g*Log[a + b*x^2 + c*x^4])/(4*c)

________________________________________________________________________________________

Rubi [A]  time = 0.725255, antiderivative size = 290, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 9, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.257, Rules used = {1673, 1676, 1166, 205, 1247, 634, 618, 206, 628} \[ \frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (\frac{-c (2 a h+b f)+b^2 h+2 c^2 d}{\sqrt{b^2-4 a c}}-b h+c f\right )}{\sqrt{2} c^{3/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (-\frac{-2 a c h+b^2 h-b c f+2 c^2 d}{\sqrt{b^2-4 a c}}-b h+c f\right )}{\sqrt{2} c^{3/2} \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{(2 c e-b g) \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{2 c \sqrt{b^2-4 a c}}+\frac{g \log \left (a+b x^2+c x^4\right )}{4 c}+\frac{h x}{c} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x + f*x^2 + g*x^3 + h*x^4)/(a + b*x^2 + c*x^4),x]

[Out]

(h*x)/c + ((c*f - b*h + (2*c^2*d + b^2*h - c*(b*f + 2*a*h))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt
[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + ((c*f - b*h - (2*c^2*d - b*c*f + b^2
*h - 2*a*c*h)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*Sqr
t[b + Sqrt[b^2 - 4*a*c]]) - ((2*c*e - b*g)*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(2*c*Sqrt[b^2 - 4*a*c]) +
 (g*Log[a + b*x^2 + c*x^4])/(4*c)

Rule 1673

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 1676

Int[(Pq_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[Pq/(a + b*x^2 + c*x^4), x], x
] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x^2] && Expon[Pq, x^2] > 1

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 1247

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{d+e x+f x^2+g x^3+h x^4}{a+b x^2+c x^4} \, dx &=\int \frac{x \left (e+g x^2\right )}{a+b x^2+c x^4} \, dx+\int \frac{d+f x^2+h x^4}{a+b x^2+c x^4} \, dx\\ &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{e+g x}{a+b x+c x^2} \, dx,x,x^2\right )+\int \left (\frac{h}{c}+\frac{c d-a h+(c f-b h) x^2}{c \left (a+b x^2+c x^4\right )}\right ) \, dx\\ &=\frac{h x}{c}+\frac{\int \frac{c d-a h+(c f-b h) x^2}{a+b x^2+c x^4} \, dx}{c}+\frac{g \operatorname{Subst}\left (\int \frac{b+2 c x}{a+b x+c x^2} \, dx,x,x^2\right )}{4 c}+\frac{(2 c e-b g) \operatorname{Subst}\left (\int \frac{1}{a+b x+c x^2} \, dx,x,x^2\right )}{4 c}\\ &=\frac{h x}{c}+\frac{g \log \left (a+b x^2+c x^4\right )}{4 c}-\frac{(2 c e-b g) \operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{2 c}+\frac{\left (c f-b h-\frac{2 c^2 d-b c f+b^2 h-2 a c h}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{2 c}+\frac{\left (c f-b h+\frac{2 c^2 d+b^2 h-c (b f+2 a h)}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{2 c}\\ &=\frac{h x}{c}+\frac{\left (c f-b h+\frac{2 c^2 d+b^2 h-c (b f+2 a h)}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{3/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\left (c f-b h-\frac{2 c^2 d-b c f+b^2 h-2 a c h}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{3/2} \sqrt{b+\sqrt{b^2-4 a c}}}-\frac{(2 c e-b g) \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{2 c \sqrt{b^2-4 a c}}+\frac{g \log \left (a+b x^2+c x^4\right )}{4 c}\\ \end{align*}

Mathematica [A]  time = 0.558978, size = 383, normalized size = 1.32 \[ \frac{\frac{2 \sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right ) \left (c \left (f \sqrt{b^2-4 a c}-2 a h-b f\right )+b h \left (b-\sqrt{b^2-4 a c}\right )+2 c^2 d\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{2 \sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right ) \left (-c \left (f \sqrt{b^2-4 a c}+2 a h+b f\right )+b h \left (\sqrt{b^2-4 a c}+b\right )+2 c^2 d\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{\sqrt{c} \left (g \left (\sqrt{b^2-4 a c}-b\right )+2 c e\right ) \log \left (\sqrt{b^2-4 a c}-b-2 c x^2\right )}{\sqrt{b^2-4 a c}}+\frac{\sqrt{c} \left (g \left (\sqrt{b^2-4 a c}+b\right )-2 c e\right ) \log \left (\sqrt{b^2-4 a c}+b+2 c x^2\right )}{\sqrt{b^2-4 a c}}+4 \sqrt{c} h x}{4 c^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x + f*x^2 + g*x^3 + h*x^4)/(a + b*x^2 + c*x^4),x]

[Out]

(4*Sqrt[c]*h*x + (2*Sqrt[2]*(2*c^2*d + b*(b - Sqrt[b^2 - 4*a*c])*h + c*(-(b*f) + Sqrt[b^2 - 4*a*c]*f - 2*a*h))
*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (2
*Sqrt[2]*(2*c^2*d + b*(b + Sqrt[b^2 - 4*a*c])*h - c*(b*f + Sqrt[b^2 - 4*a*c]*f + 2*a*h))*ArcTan[(Sqrt[2]*Sqrt[
c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + (Sqrt[c]*(2*c*e + (-b +
Sqrt[b^2 - 4*a*c])*g)*Log[-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2])/Sqrt[b^2 - 4*a*c] + (Sqrt[c]*(-2*c*e + (b + Sqrt[
b^2 - 4*a*c])*g)*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^2])/Sqrt[b^2 - 4*a*c])/(4*c^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.03, size = 1132, normalized size = 3.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((h*x^4+g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a),x)

[Out]

h*x/c-1/4*(-4*a*c+b^2)/(4*a*c-b^2)/c*ln(-2*c*x^2+(-4*a*c+b^2)^(1/2)-b)*g+1/4*(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)/c*
ln(-2*c*x^2+(-4*a*c+b^2)^(1/2)-b)*b*g-1/2*(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)*e*ln(-2*c*x^2+(-4*a*c+b^2)^(1/2)-b)-1
/2*(-4*a*c+b^2)/(4*a*c-b^2)/c*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2
)-b)*c)^(1/2))*b*h+1/2*(-4*a*c+b^2)/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(
((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*f-(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arc
tanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*a*h+1/2*(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)/c*2^(1/2)/(((-4*a*c+
b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b^2*h-1/2*(-4*a*c+b^2)^(1/2)/(4*a
*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2))*b*f+c*(
-4*a*c+b^2)^(1/2)/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)*c)^(1/2)*arctanh(c*x*2^(1/2)/(((-4*a*c+b^2)^(1/2
)-b)*c)^(1/2))*d-1/4*(-4*a*c+b^2)/(4*a*c-b^2)/c*ln(2*c*x^2+(-4*a*c+b^2)^(1/2)+b)*g-1/4*(-4*a*c+b^2)^(1/2)/(4*a
*c-b^2)/c*ln(2*c*x^2+(-4*a*c+b^2)^(1/2)+b)*b*g+1/2*(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)*e*ln(2*c*x^2+(-4*a*c+b^2)^(1
/2)+b)+1/2*(-4*a*c+b^2)/(4*a*c-b^2)/c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+
b^2)^(1/2))*c)^(1/2))*b*h-1/2*(-4*a*c+b^2)/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(
1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*f-(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/
2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*h+1/2*(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)/c*2^(1/2)/((b+(
-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2*h-1/2*(-4*a*c+b^2)^(1/2)/
(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*f+
c*(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^
(1/2))*c)^(1/2))*d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((h*x^4+g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((h*x^4+g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((h*x**4+g*x**3+f*x**2+e*x+d)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((h*x^4+g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError